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Abstract

In this chapter we present an experimental implementation of an
asymmetric backdoor in RSA key generation. The implementation is
written in ANSI C. We codified what it means for an asymmetric back-
door to be secure (for the designer) in our definition of a secretly em-
bedded trapdoor with universal protection (SETUP). The main prop-
erties of a SETUP are: (1) the complete code for the backdoor does
not enable anyone except the designer to use the backdoor, and (2) the
key pairs that are output by the backdoor RSA key generator appear
to all probabilistic polynomial time algorithms like normal (no back-
door) RSA key pairs. We introduced the notion of a SETUP at Crypto
’96 [15] and there has been significant advances in the area since then.
This chapter and the corresponding appendix constitutes Fundamental
Research in cryptovirology and expands on our elliptic curve backdoor
in RSA key generation that we presented at the Selected Areas in Cryp-
tography conference in 2005. In particular, the design employs several
algorithmic improvements that enable the key generator to run faster.
This chapter provides a walk-through of the experimental implementa-
tion. The backdoor is based on OpenSSL and the code for it appears in
the appendix that is associated with this chapter. For over 10 years we
have advocated that the industry change the way RSA keys are gen-
erated. We devised and presented heuristic methods that completely
foil this entire class of backdoors in RSA key generation [15, 12]. The
approach in [12] is reminiscent of the NIST FIPS 186-2 DSA parameter
generation method.

∗If this file was obtained from a publicly accessible website other than the website
www.cryptovirology.com then (1) the entity or entities that made it available are in vio-
lation of our copyright and (2) the contents of this file should therefore not be trusted.
Please obtain the latest version directly from the official Cryptovirology Labs website at:
http://www.cryptovirology.com.
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Introduction 2

1 Introduction

For years there have been efforts by cryptologists to design undetectable
backdoors in the RSA key pair generation algorithm. Research papers can
be traced back to 1993 that propose, cryptanalyze, revise, and critique back-
doors in RSA key generation. Based on our knowledge of the subject, the
following appears to hold: no experimental implementation of an asymmet-
ric backdoor in RSA key generation has been made publicly available and
none have been scrutinized by the research community.

It is not clear why this is the case. Perhaps researchers have not made
implementations available because, of the few academics actively working on
this problem and doing experiments, none of them has been content enough
with the design to make the source code available.

Kleptographers suffer from a design restriction that cryptographers take
for granted: A kleptographer cannot change the I/O specifications of the
target cryptographic algorithm. The kleptographer must design his or her
backdoor algorithm within the cryptographic algorithm, maintain the same
I/O specifications of the targeted algorithm, and preserve the security guar-
antees insofar as possible. To make matters worse, timing analysis and
power analysis have the potential to distinguish backdoor key generators
from “honest” key generators that have no backdoor.

One may therefore draw the conclusion that designing a secure asym-
metric backdoor is a difficult endeavor. We believe that there is still much
research to be done on this subject and we also believe that a freely-accessible
experimental implementation may help drive progress on this academic prob-
lem.

This chapter presents an experimental asymmetric backdoor in RSA
key generation that we designed. Our initial benchmarks indicate that the
running time is favorable enough to not arouse the suspicion of a casual user
of the backdoor RSA key generator.

There have been efforts to mitigate the threat posed by backdoors. In re-
sponse to allegations that primes in the Digital Signature Algorithm (DSA)
could exhibit a backdoor, NIST published a DSA parameter generation al-
gorithm that in theory makes it difficult to plant a backdoor in DSA (see
Appendix 2 of [10]). Also, we briefly outlined a heuristic algorithm for foil-
ing asymmetric backdoors in RSA key generation in the same paper that
we introduced the notion of an asymmetric backdoor [15]. This was over
10 years ago. To make it even easier for standardization bodies to adopt
our heuristic, we presented a detailed method for mitigating this threat in
CryptoBytes, the technical newsletter of RSA Labs [12]. This latter method
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is specifically tailored after the aforementioned NIST DSA parameter gen-
eration method. We believe that there has been ample warning, technical
guidance, and time to permit standardization bodies to reduce the threat
posed by backdoors in RSA key generation.

As part of our research on asymmetric backdoors, we obtained a copy of
the OpenSSL source code and used it as a test bed for our backdoor designs.
We found and reported two weaknesses and an inefficiency while we worked
with the code (a process that spanned many years). These were subse-
quently fixed by the OpenSSL development team, thereby making OpenSSL
an even better cryptographic library. So, in retrospect it is ironic that
while researching a robust backdoor in OpenSSL we ended up strengthening
OpenSSL.

The vulnerability was as follows. We discovered that OpenSSL chose
witnesses for the Miller-Rabin probabilistic primality test using a biased
distribution. We therefore found a bug in OpenSSL RSA key generation
since OpenSSL RSA key generation relies on Miller-Rabin. We suggested
that an iterative acceptance/rejection algorithm be used so that witnesses
would be selected using a uniform distribution. In response, the OpenSSL
development team implemented our proposed fix by adding the functions
BN rand range and BN pseudo rand range to OpenSSL. These were in turn
used to repair the bug we found in OpenSSL RSA key generation.1

The inefficiency was as follows. We discovered that the predicate for
testing whether or not a point is on an elliptic curve used more multipli-
cations than necessary. We suggested that Horner’s Algorithm be used to
evaluate the cubic polynomial in the Weierstrass equation.2

The most recent weakness was found with the help of an anonymous
referee during a paper submission of ours. Given that our backdoor is built
into OpenSSL, part of the OpenSSL algorithm was in the submission and this
resulted in the discovery of yet another bug in OpenSSL RSA key generation.

The weakness was a 32-bit unsigned overflow in the trial-division func-
tion probable prime() in OpenSSL. The bug is no longer there since Bodo
Möller made our bug fix to OpenSSL.3 Given the goto loop statement it
was possible for mods[i] + delta to overflow before delta overflows.

In particular, the constant NUMPRIMES is 2048 and the array primes

1Specifically, the OpenSSL distributions 0.9.6a/0.9.6b/0.9.6c and 0.9.7 (and later) have
been fixed.

2The OpenSSL development team responded by fixing this inefficiency in OpenSSL
distribution 0.9.8. See http : //cvs.openssl.org/chngview?cn = 12445.

3Our fix was made by Bodo, check-in number 15563 to Branch: OpenSSL 0 9 7. See
http://cvs.openssl.org/chngview?cn=15563.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 3.0.



Background on RSA Key Generation Backdoors 4

stores the 2048 primes starting from the value primes[0] = 2 up to the value
primes[NUMPRIMES− 1] = 17863, inclusive. The array mods has the same
number of elements as the array primes. Define MAXDELTA to be 232 − 1 −
primes[NUMPRIMES− 1]. Our OpenSSL fix uses this as an upper limit on
delta to ensure that the 32-bit word (mods[i] + delta) does not overflow.

We reported these findings immediately upon finding each of them. In
all cases the fixes were made to OpenSSL. So, from this perspective our
research has had a very direct and positive impact on OpenSSL.

It behooves us to remind software developers that it is imperative to ver-
ify the integrity and authenticity of a cryptographic library prior to using it.
The OpenSSL development team provides MD5 digests and ASC signatures
on each tarball that they make available. Developers that use OpenSSL
should always check the authenticity of the OpenSSL source code using pgp
or gpg prior to using it. The public key of the appropriate OpenSSL team
member is needed to verify the signature on OpenSSL. The OpenSSL FAQ
explains how to verify the authenticity of OpenSSL distributions.

We encourage the international cryptologic research community to study
our design, to break it, and to fix it. The story is far from over and it
would be silly for us to think that this design is the be all and end all of
asymmetric backdoors in RSA key generation. We encourage developers
and researchers to send comments, suggestions, and constructive criticisms
to: feedback@cryptovirology.com.

2 Background on RSA Key Generation Backdoors

Ross Anderson presented a backdoor in RSA key generation in 1993 [1]. This
design would later fall into the category of backdoors known as symmetric
backdoors. A symmetric backdoor is a backdoor that has the following prop-
erty: if the code that contains the backdoor is published then the backdoor
can be used by anyone. This contrasts with an asymmetric backdoor that
even if published can still only be used by the person that plants it. Burt
Kaliski cryptanalyzed Anderson’s backdoor construction [4].

We introduced the notion of an asymmetric backdoor in our Crypto
’96 paper [15]. Our goal was to devise a Trojan horse for the RSA key
generation algorithm in such a way that the Trojan is highly robust against
reverse-engineering.

The paper shows how to use public key cryptography to undermine pub-
lic key cryptography itself by having the designer plant his or her public key
within an RSA key generator and use it to securely compromise the coin
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Background on RSA Key Generation Backdoors 5

flips that are used to generate RSA primes. The cryptotrojan encodes the
asymmetric encryption of a randomly generated seed in the upper order bits
of the RSA modulus that is being generated and uses the seed to generate
one of the RSA primes (the seed is passed through a cryptographic hash
function [16]). So, from the designer’s perspective, an RSA modulus is an
RSA public modulus and an asymmetric ciphertext that permits said mod-
ulus to be factored. Only the designer can decipher the encoding since only
the designer knows the needed private decryption key.

The Crypto ’96 paper does not utilize the terminology “asymmetric back-
door”. Rather, it refers to the designer’s public key as a secretly embedded
trapdoor. This trapdoor provides universal protection since if a reverse-
engineer obtains the code for the backdoor he will not be able to use the
backdoor since the designer’s private decryption key is needed. In an at-
tempt to formalize what it means for an asymmetric backdoor to be secure
for the designer, we introduced the definition of a SETUP (secretly embed-
ded trapdoor with universal protection).

Over the years we have come to the conclusion that the term asymmetric
backdoor is more intuitive than the previous terminology that we’ve used
(SETUP attack, kleptography, cryptotrojan). So, at this time we still em-
ploy the definition of a SETUP attack, but for simplicity we refer to this
class of backdoors as asymmetric backdoors. In retrospect, our Crypto ’96
paper partitioned backdoor attacks into those that are symmetric (i.e., the
previous backdoor designs) and those that are asymmetric.

The Crypto ’96 result was later strengthened and the notion of a weak,
regular and strong SETUP was introduced [16]. A regular SETUP ensures
that dishonest public keys (i.e, public keys that exhibit a backdoor) are com-
putationally indistinguishable from honest public keys (i.e., public keys with
no backdoor). A strong SETUP goes beyond this by ensuring that back-
door key pairs are computationally indistinguishable from honest key pairs.
This is an important requirement since a suspicious user (distinguisher) may
have explicit access to both the public key and corresponding private key
that are produced by a black-box key pair generator. This contrasts with
the case that a key pair is generated in a smartcard and the private key is
non-exportable.

The results [18, 3] revealed a weakness in the previous SETUP attacks
on RSA key generation. More specifically, they showed a weakness that
adversely affects the indistinguishability argument regarding honest vs. dis-
honest public keys. These and subsequent works patched the issue. It is nec-
essary to very concretely define the honest RSA key generation algorithm.
For instance, it must be specified whether each RSA prime is guaranteed
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to be a k-bit binary integer, whether the two uppermost bits in the binary
representation are always unity, and so on.

A paper by Slakmon and Crépeau [3] introduced a useful new primitive
for designing asymmetric backdoor attacks. This paper presents a symmetric
backdoor in RSA key generation in which the designer utilizes Coppersmith’s
factoring algorithm [2] to recover the RSA primes. This significantly lowers
the required bandwidth of the subliminal channel in RSA composites.

The backdoors in [18, 17, 13] utilize the random oracle model and sub-
stantiate the properties of a SETUP using reduction arguments. The paper
[13] builds a backdoor in RSA using the Rabin cryptosystem [11] whereas
[14] relies on Elliptic Curve Diffie-Hellman.

A challenge that remained after these works was to construct an asym-
metric backdoor in 1024-bit RSA moduli. If the asymmetric backdoor is a
Rabin or RSA public key then the backdoor has a security parameter that
is about half that of the RSA key pairs being generated. In 1996 it was
not unreasonable to use a 512-bit key as an asymmetric backdoor (but it
was cutting it close even then). These days a security parameter of 512 for
factoring-based cryptosystems is entirely unacceptable.

The backdoor that we presented at the Selected Areas in Cryptography
’05 conference solved this problem [14]. The challenge was to embed a com-
pact asymmetric ciphertext4 in the upper order bits of the modulus being
generated while maintaining the indistinguishability property of a SETUP. A
straightforward application of ECDH would not suffice. To see this, suppose
that a binary curve over GF(2m) is used and that points are represented in
compressed form. Only about half of the strings in {0, 1}m+1 are compressed
points on the curve. This permits a trivial poly-time distinguisher.

We solved this problem by utilizing a twisted pair of elliptic curves over
GF(2m). Kaliski utilized twists to construct a provably secure pseudoran-
dom bit generator [5, 6]. Möller later used twisted binary curves to construct
a public key stegosystem [9].

The asymmetric backdoor that is the subject of this chapter is based
on [14] and it utilizes twisted binary curves. It also employs Möller’s fast
EC scalar multiplication algorithm [8]. We utilize this method, called the
wNAF-splitting method, because it is ideal for our needs and because it is
already built into OpenSSL.

This chapter is far from a self-contained scientific explanation of the
backdoor we discuss. To obtain an in-depth understanding of our design it
is necessary to consult the cited scientific literature. Our primary goal is to

4Or Diffie-Hellman key exchange value.
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provide a walk-through of our scientific experiment.
We remark that it is likely that something is wrong with our implemen-

tation. In the grand scheme of things, there has been very little theoretical
work on asymmetric backdoors in RSA key generation, as compared to, say,
developing secure public key cryptosystems. This implies the possibility of
a theoretical oversight. Also, our experimental code is the only one that
we are aware of that is currently in the public domain. At this time it has
undergone no scrutiny whatsoever by the software development community.
This implies the possibility of an implementation error. So, our readers have
been warned.

In regards to the aforementioned theoretical work, we give a listing of
those research scientists that we are aware of that have published academic
papers on backdoors in RSA key generation. From the United States there
is ourselves and Burt Kaliski from RSA Labs. From the University of
Cambridge in England there is Ross Anderson. From McGill University
in Canada there is Claude Crépeau and Alain Slakmon. In Poland there is
Daniel Kucner from Wroc law University and Miros law Kuty lowski from the
Wroc law University of Technology [7]. This list does not include researchers
that have investigated other types of backdoors. We apologize if we missed
any research scientists in this list.

3 Creating the Program

The program gf2mklepto consists of the ANSI C source files gf2mklepto.c
and symklepto.c. It also consists of the header files gf2mklepto.h and
ecpubkeys.h. The latter header file is created by our program and it con-
tains the asymmetric backdoor. Due to the low-level routines that are used,
the following native OpenSSL header files are also needed for compilation:
ec lcl.h, bn lcl.h, and bn prime.h.

We constructed a simple makefile to create gf2mklepto. The program
was compiled using gcc. We used the Minimalist GNU for Windows devel-
opment suite (MinGW) and employed the OpenSSL crypto library for its
underlying crypto routines. In particular we used OpenSSL version 0.9.8d.
Our program also utilizes the Microsoft Cryptographic API (MS CAPI) to
seed the OpenSSL random number generator. Compiling the program re-
sults in the MS DOS command-line program gf2mklepto.exe.

Acknowledgments: We thank the OpenSSL development team for pro-
ducing and maintaining their superb cryptographic library. Our code base
relies on the OpenSSL DLL libeay32.dll. Also, our code base uses func-
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tions that are internal to OpenSSL and that have no public interface. For
example, we use the OpenSSL function compute wNAF that is defined as a
static function in the OpenSSL source code. We claim no copyright over
these functions and acknowledge OpenSSL for their creation.

4 Running the Program

This walk-through will not focus on the technical details of the underlying
asymmetric backdoor. The reader is referred to the recent literature for this
[14]. Instead, we will concentrate on the input/output aspects of using the
asymmetric backdoor.

The program starts by printing out copyright information and some bibli-
ographic references. It seeds the OpenSSL pseudorandom number generator
as follows. It obtains 512 bytes from the Microsoft Cryptographic API call
CryptGenRandom and then passes them to the OpenSSL function RAND seed.
The program then calls RAND status. This OpenSSL function returns 1 if
OpenSSL believes that it has been seeded with a sufficient number of bytes
and it returns 0 otherwise.

"gf2mklepto" Copyright (c) 2005-2006 by
Moti Yung and Adam L. Young. All rights reserved.
This program is based on the following:
(1) A. Young, M. Yung, "The Dark Side of Black-Box
Cryptography, or: Should we trust Capstone?" Advances in
Cryptology---Crypto ’96, N. Koblitz (Ed.), LNCS 1109,
pp. 89-103, 1996.

(2) A. Young, M. Yung, "Malicious Cryptography: Exposing
Cryptovirology", John Wiley & Sons, Feb., 2004.

(3) A. Young, M. Yung, "A Space Efficient Backdoor in RSA and
its Applications," Selected Areas in Cryptography---SAC ’05,
B. Preneel, S. Tavares (Eds.), LNCS 3897, pp. 128-143, 2005.

RAND_status() returned 1.
SETUP functions:
Type (a) to generate new EC key pairs for the SETUP attack.
Type (b) to generate and store an RSA key pair with a SETUP.
Type (c) to test RSA encryption/decryption with the key pair.
Type (d) to read in the RSA public modulus and factor it.
Type (e) to execute a support function.

Enter command (a-e) :

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 3.0.



4.1 Generate New Backdoor EC Key Pairs 9

This chapter will only cover commands (a) through (d). Command (e)
is used for software development and testing purposes. Some of the sub-
functions in (e) are deprecated.

4.1 Generate New Backdoor EC Key Pairs

The backdoor uses a predefined pair of twisted binary curves. Command
(a) generates a maximal order base point for each of these two curves. It
then generates EC key pairs using these base points. The base points and
public keys are stored in a format that enables the wNAF splitting method
to be used [8]. This is a method for performing fast scalar multiplication.

Enter command (a-e) : a
WARNING: Overwriting all EC private keys in "privkeys.txt".
Generating new EC key pairs for the Young-Yung SETUP attack.

Group parameters for binary curve E_{0,b} in twist is:
Weierstrass coefficient a = 0
Weierstrass coefficient b = 197D4C3C909B4C8EAC18BB296C11BFB18C80
B37C0C62AFD8E5F00104C46EEAF0B
irreducible trinomial p = 20000000000000000000000000000000000000
000000000000000000000001001
prime r_0 = 800000000000000000000000000000005EB3E3179500E2B5D2F8
EA6DCC363C1F
cofactor = 4
maximum order = cofactor * r_0 = 2000000000000000000000000000000
017ACF8C5E54038AD74BE3A9B730D8F07C
Commencing EC key generation for curve E_{0,b}...
Generating random base point G_0 with maximum order...
Computing wNAF splitting values for G_0.
Generating EC private key x_0 < r_0 randomly...
EC private key x_0 is 35902D6105480EF41E4E88B7B07ED596A5741DC74E
CF3C4244FFCD3F8D49C380
Computing public key Y_0 = x_0 * cofactor * G_0.
Computing wNAF splitting values for Y_0...

Group parameters for binary curve E_{1,b} in twist is:
Weierstrass coefficient a = 1
Weierstrass coefficient b = 197D4C3C909B4C8EAC18BB296C11BFB18C80
B37C0C62AFD8E5F00104C46EEAF0B
irreducible trinomial p = 20000000000000000000000000000000000000
000000000000000000000001001
prime r_1 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF429839D0D5FE3A945A0E
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4.2 Generate an RSA Key Pair with a SETUP 10

2B24679387C3
cofactor = 2
maximum order = cofactor * r_1 = 1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FE853073A1ABFC7528B41C5648CF270F86
Commencing EC key generation for curve E_{1,b}...
Generating random base point G_1 with maximum order...
Computing wNAF splitting values for G_1.
Generating EC private key x_1 < r_1 randomly...
EC private key x_1 is C2DEFD956EF2DB97BA3C7C240048B2A6CCBF68CC09
ACA824952EE6E9F3FE37FA
Computing public key Y_1 = x_1 * cofactor * G_1.
Computing wNAF splitting values for Y_1...

EC private keys successfully written to "privkeys.txt".
EC public keys successfully written to "pubkeys.txt".
Wrote EC public keys (wNAF splitting values) to the
file named "ecpubkeys.h".

To use the new EC key pairs RECOMPILATION is needed.
Number of open files = 0.
-----Memory Leaks displayed below--(shouldn’t be any)---
-----Memory Leaks displayed above-----------------------

The two EC private keys, one for each curve in the twist, are saved in the
file privkeys.txt. The corresponding public keys are saved in pubkeys.txt.
Also, the wNAF splitting values are stored in ecpubkeys.h as ANSI C data
structures. To use the backdoor, the program must be recompiled using this
new ANSI C header file.

4.2 Generate an RSA Key Pair with a SETUP

After recompilation, the asymmetric backdoor is ready for use. Command
(b) generates a new RSA key pair. However, the resulting RSA public key
contains a SETUP.

Enter command (a-e) : b
The default RSA public exponent is 0x10001
Enter e in hex or type "z" for default: z
Using default e.
The default modulus size is 1024 bits.
Enter size or type "z" for default: z
Using default modulus size.
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4.2 Generate an RSA Key Pair with a SETUP 11

NOTE: The program is currently configured in such a way that it
does NOT attempt to mimic the distribution of OpenSSL RSA
primes. There are functions in the code base that attempt
to do this.
Randomly choosing which curve to do rogue key exchange on...
Rogue ECDH exchange will use curve E_{1,b}.
Loading wNAF splitting values for curve E_{1,b}.
Choosing K < 2*r_1 randomly.
Computing k = K mod r_1.
Computing P = KG_1.
Compressed P to get s_pub = 22288BA92B806552E4635C2132BACE4E35C4
51FCA8538B7AB4A054D5BA2D52392
s_pub is 258 bits in length.
Now setting P = kY_1.
Compressed P to get s_priv = 374B7EC194C4D7A56D60E51FB684207A1CC
BFB0B64781F1173C9A960AAF290E5A
s_priv is 258 bits in length.
s_pub is the ECDH key exchange value generated by this
RSA key generation algorithm. s_priv is the corresponding
ECDH shared secret that is shared between this key generation
algorithm and the malicious designer.
s_pub is encoded into the upper order bits of the candidate
RSA modulus n. s_priv is used to derive the RSA prime p1.
e = 10001
n = D688A22EA4AE01954B918D7084CAEB3938D71147F2A14E2DEAD2815356E
8B548E4AA6F1DD26A96FDDABF28432316553DAEC82BAD80C802BBDFDA5C9C3E1
311F1C5EB14447F2C5AB3FA48EBB46979CD49356D5DC3139EA92290828AD7217
ECF30F710ED2003E10784C3884D32FDCB0F4821301958469C14F0D33308A4F69
FF771
p1 = FFBF56B35395C8403A1D0ADDD1B86B19E37E27290D22E2069CE00D9B6A1
FE4C84341B08356EC875E6641CBA512EDADB133B6DCC0B2A3965BAD94363F282
F6A9B
q1 = D6BEDFEAF2888FD3DAC5C93B5A35D3A5F8C7DE77BFFC41A84172A6C39F2
D644F2AF7BCB1588648E8EEB590A293569C6ADB9C880108299F3AA3C2DACBCC0
C50E3
Wrote RSA public key to "rsapubkey.txt".
Wrote RSA private key to "rsaprivkey.txt".
Number of open files = 0.
-----Memory Leaks displayed below--(shouldn’t be any)---
-----Memory Leaks displayed above-----------------------

Command (b) writes the new RSA public key to the file rsapubkey.txt.
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It writes the corresponding RSA private key to file rsaprivkey.txt.

4.3 Test RSA Encryption and Decryption

Command (c) is used to perform a simple verification of the RSA key pair. It
loads the RSA public key from the file rsapubkey.txt and the RSA private
key from the file rsaprivkey.txt.

Enter command (a-e) : c
Loading RSA public key from file "rsapubkey.txt".
n = D688A22EA4AE01954B918D7084CAEB3938D71147F2A14E2DEAD2815356E8
B548E4AA6F1DD26A96FDDABF28432316553DAEC82BAD80C802BBDFDA5C9C3E13
11F1C5EB14447F2C5AB3FA48EBB46979CD49356D5DC3139EA92290828AD7217E
CF30F710ED2003E10784C3884D32FDCB0F4821301958469C14F0D33308A4F69F
F771
e = 10001
Loading RSA private key from file "rsaprivkey.txt".
p1 = FFBF56B35395C8403A1D0ADDD1B86B19E37E27290D22E2069CE00D9B6A
1FE4C84341B08356EC875E6641CBA512EDADB133B6DCC0B2A3965BAD94363F28
2F6A9B
q1 = D6BEDFEAF2888FD3DAC5C93B5A35D3A5F8C7DE77BFFC41A84172A6C39F
2D644F2AF7BCB1588648E8EEB590A293569C6ADB9C880108299F3AA3C2DACBCC
0C50E3
d = 7489241052447377B5E50AFFE42296442F2C24A70095BEF2126CE6F36E72
5A878E2F46CCDC502A551B4E5B809CBEB4EF1CD27F67705D359EF8AA95440A34
31BA3444DEE23C7BEFD10BBBB9770AA79475E78807C816A38ECA9A3082401A64
4C83F2619D8B2801F6DFD7FFC3DF135C921EAE554583C1CE4E65CBC4C16B5781
3B5
Choosing m_1 randomly from Z_n^*...
plaintext m_1 = B18CB6D0A7C5C717423D1A8C312FAF21AF2BD757751560FD
4A8E92BF4B4BA03AC8505C8399B67DAAC0DDEB7CC5E87CDAF008E48C29442C99
6A07F4E82977A1297BB89BD9A9B17BC40A1BDFE2F440A72F86F69509D6B927B8
5FA1F7945B0950FDE89EF9F49814A0427C48512DE8A16463B4D805864825FA9A
2A49E015708C19C8
ciphertext c = m_1^e mod n = 68619D243521DDE287FADA398A0B0DE576F
1E9940D303FFA7BABA264AB9AE92869DADEA8E639C95D7993EDA2F5047CAB411
C5ADBD270563C6E13293C2DA0E95E4F61D6289FCB608D9E294894ED06FE2D2B6
E9020E3BCA323390F8D55785B79C04108ADAE96B8E8CC16194D4B3912380C4DE
C794963D9F5D35C62E3BE6969653D
Now computing m_2 = c^d mod n...
plaintext m_2 = B18CB6D0A7C5C717423D1A8C312FAF21AF2BD757751560FD
4A8E92BF4B4BA03AC8505C8399B67DAAC0DDEB7CC5E87CDAF008E48C29442C99
6A07F4E82977A1297BB89BD9A9B17BC40A1BDFE2F440A72F86F69509D6B927B8
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5FA1F7945B0950FDE89EF9F49814A0427C48512DE8A16463B4D805864825FA9A
2A49E015708C19C8
RSA decryption succeeded since m_2 = m_1.
Number of open files = 0.
-----Memory Leaks displayed below--(shouldn’t be any)---
-----Memory Leaks displayed above-----------------------

Command (c) generates a random plaintext m1 and then RSA encrypts
it to get the ciphertext c. The value c is decrypted using the RSA private
key. The command indicates whether or not RSA decryption succeeds.

4.4 Factor the RSA Modulus Using the EC Private Keys

Command (d) is used to factor an RSA modulus that was created using this
program. It loads the modulus by reading in the RSA public key from the
file rsapubkey.txt. The two EC private keys are loaded in from the file
privkeys.txt.

If the EC public keys that are embedded within gf2mklepto.exe do not
correspond to the private keys in privkeys.txt then the factoring attempt
will fail. This type of failure can happen during experimentation when one
forgets to recompile the program after command (a), for example. It is very
easy to make this mistake while experimenting. It happened to us many
times.

Enter command (a-e) : d
Loading RSA public key from file "rsapubkey.txt".
n = D688A22EA4AE01954B918D7084CAEB3938D71147F2A14E2DEAD2815356E8
B548E4AA6F1DD26A96FDDABF28432316553DAEC82BAD80C802BBDFDA5C9C3E13
11F1C5EB14447F2C5AB3FA48EBB46979CD49356D5DC3139EA92290828AD7217E
CF30F710ED2003E10784C3884D32FDCB0F4821301958469C14F0D33308A4F69F
F771
e = 10001
Loading EC private keys from file "privkeys.txt".
x0 = 35902D6105480EF41E4E88B7B07ED596A5741DC74ECF3C4244FFCD3F8D4
9C380
x1 = C2DEFD956EF2DB97BA3C7C240048B2A6CCBF68CC09ACA824952EE6E9F3F
E37FA
Attempting decompression of s_pub as if it is a
compressed point on curve E_{0,b}...
Decompression failed. Attempting decompression of s_pub
as if it is a compressed point on curve E_{1,b}...
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Determined that s_pub is on curve E_{1,b}.
s_pub successfully decompressed.
Recovered shared ECDH secret s_priv.
Now using s_priv to try to factor n...
succeed = 1.
p1 = FFBF56B35395C8403A1D0ADDD1B86B19E37E27290D22E2069CE00D9B6A1
FE4C84341B08356EC875E6641CBA512EDADB133B6DCC0B2A3965BAD94363F282
F6A9B
Number of open files = 0.
-----Memory Leaks displayed below--(shouldn’t be any)---
-----Memory Leaks displayed above-----------------------

The program uses trial-and-error to determine which of the two curves
were used to conduct the rogue elliptic curve Diffie-Hellman key exchange.
This trial-and-error method is implemented by using point decompression.
Recall that the decision as to which curve is used is made randomly during
RSA key generation.

Once the correct curve in the twist is determined, the corresponding EC
private key is used to recover the shared elliptic curve Diffie-Hellman secret.
This shared secret is then used to recover the RSA prime p1.

5 Conclusion

We reviewed the academic literature on backdoors in RSA and in particular
we covered the notion of a SETUP attack. In addition we noted some of the
research scientists from around the world that are actively working on the
problem of designing backdoors in RSA key generation. We emphasize yet
again the importance of having the industry move away from the way RSA
key pairs are currently generated. By simply choosing two RSA primes ran-
domly, the way is paved for this class of clandestine asymmetric backdoors.
To guide developers and standardization bodies, we provided pointers to
research papers that detail countermeasures against this class of backdoors.

We presented an experimental implementation of our asymmetric back-
door in RSA key generation that employs a twisted pair of binary curves,
a design that is based on [14]. A step-by-step demonstration of the experi-
mental program was given and the resulting output was provided.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 3.0.



REFERENCES 15

References

[1] Ross Anderson. A practical RSA trapdoor. Electronics Letters,
29(11):995, 27 May 1993.

[2] Don Coppersmith. Finding a small root of a bivariate integer equa-
tion; factoring with high bits known. In Ueli Maurer, editor, Advances
in Cryptology—Eurocrypt ’96, pages 178–189. Springer, 1996. Lecture
Notes in Computer Science No. 1233.
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