
Chapter 8:

An Implementation of

Tagged Private Information Retrieval∗

Adam L. Young and Moti M. Yung

Abstract

In this chapter we present an experimental implementation of the
tagged private information retrieval protocol (TPIR). Informally, a
TPIR protocol retrieves data from a database without revealing the
entry that the data is taken from and that satisfies additional security
properties. Let B = ((t0, b0),(t1, b1),...,(tW−1, bW−1)) be a database
with W entries. Data bi is “tagged”, (i.e., uniquely identified) us-
ing the tag string ti for i = 0, 1, ..., W − 1. A user wants bi from
the database but does not trust the database administrator to know
the tag ti. In a TPIR protocol, the user supplies ti to algorithm
QueryGenerator which outputs a private key and a query q. The
query is given to the database administrator who then passes B and
q to DatabaseAlgorithm. The output of this algorithm is a response
r. The administrator sends r to the user. The user supplies r and the
private key to ResponseRetriever which then outputs bi. These 3 al-
gorithms are public and the protocol satisfies the following properties:
(1) q does not reveal ti, (2) the user trusts the database administrator
to run DatabaseAlgorithm on the correct inputs and return r to the
user, and (3) bi can only be recovered from r using the user’s private
key. This chapter implements a modified version of the TPIR protocol
that was introduced in Section 6.4 of the book Malicious Cryptography

[10], a protocol that is closely related to [1]. We apply TPIR to im-
plement an experimental password-snatching cryptotrojan that does
not reveal the unique login/password pair that it snatches. The TPIR
algorithm that we present can be applied to numerous PIR problems.

∗If this file was obtained from a publicly accessible website other than the website
www.cryptovirology.com then (1) the entity or entities that made it available are in vio-
lation of our copyright and (2) the contents of this file should therefore not be trusted.
Please obtain the latest version directly from the official Cryptovirology Labs website at:
http://www.cryptovirology.com.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1. 1

Introduction 2

1 Introduction

This chapter presents an experimental implementation of tagged private
information retrieval. We focus on how to run and interpret the results
of our experimental program and important aspects of the ANSI C code.
Our goal is not to give the theory behind TPIR. Readers interested in other
aspects of private information retrieval (PIR) should look elsewhere, i.e.,
the scientific literature that introduced and advanced PIR [3, 4, 2, 7]. This
chapter and the associated appendix that contains the corresponding source
code constitute Fundamental Research in cryptovirology.

There are numerous applications of PIR. For example, PIR can be used
to conduct patent searches without revealing to the patent database admin-
istrator the intellectual property of interest. It can be used in bioinformatics
to identify common symptoms of patients suffering from a particular disease
without compromising the privacy of the patients.

PIR can be used for malicious purposes as well. It can form the basis of
a cryptotrojan that covertly steals information from the host system without
revealing the information that is sought. The research that we present in
this chapter therefore has both positive and negative applications.

The TPIR protocol that we present, which we will call TPIR2, is a mod-
ified version of the TPIR protocol, call it TPIR1, that appears in Chapter
6, Section 6.4 of [10]. TPIR1 is closely related to the two-round computa-
tional PIR protocol of Cachin et al [1], which for brevity we will call the
CPIR protocol. CPIR assumes the existence of a single database and it is
based on two new complexity assumptions, the phi-hiding and phi-sampling
assumptions.

TPIR2 differs from TPIR1 in several ways. Additional constraints are
imposed by TPIR2 on the composite m = q1q2 that is used in both TPIR1
and TPIR2. More specifically, the prime qi is chosen such that qi−1 is divis-
ible by a large prime for i = 1, 2. This makes m hard to factor. TPIR1 uti-
lizes a random oracle to implement a random function. In contrast, TPIR2
utilizes SHA-256 to heuristically approximate a random function. The al-
gorithm ResponseRetriever has been significantly optimized to run faster.
Since we are interested in a real-world experimental application here, we
do not “pass” the security parameter 1k as an argument. There are other
changes as well and Section 6.4 of [10] may be consulted for more informa-
tion.

We state up front that TPIR2 is not an implementation of CPIR. The
TPIR protocols are based on a problem that is closely related to the phi-
hiding decision problem. Informally, the TPIR protocols are based on the

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

Background on Password Snatching 3

hardness of deciding whether or not p is in the prime power decomposition of
φ(m) given (p,m). The protocols rely on a similar phi-sampling assumption
as well. However, so many aspects of the protocols differ from CPIR that
the proof of security of CPIR does not apply to TPIR2 (nor to TPIR1).

The TPIR protocols are designed to shrink the size of the query that the
user sends to the database administrator. They are also designed to privately
retrieve an entire bit string as opposed to a single bit. They are intended to
be efficient enough to be used in practice for certain applications. They are
based on known problems in computational complexity. We speculate that
TPIR2 is secure. However, we have no formal proof of security to support
this claim.

So, what does this mean in practical terms? What it means is that we
have forgone the usual practice of formally restricting weaknesses to well-
defined axioms in favor of an implementation with appreciable performance.
Our claim that TPIR2 is secure could be entirely wrong. If we are wrong and
an algorithm is discovered that, say, breaks TPIR2, then it may be entirely
incorrect to assume that CPIR is flawed. One would need to analyze the
reduction that breaks TPIR2 and see if it can be adjusted to break CPIR.
We disclaim any and all flaws in the implementation, both theoretical and
accidental.

Why would we go through the trouble to design and implement an exper-
imental TPIR scheme with no formal proof of security? Because we believe
that a heuristic scheme with no apparent weaknesses, that is computation-
ally efficient enough to be used to solve real-world cryptovirology problems
and otherwise, merits both scientific exploration and open discussion.

2 Background on Password Snatching

A fundamental problem in cryptovirology is to devise malware that steals
information from a host machine in such a way that the attacker is protected
insofar as possible. Some of the issues that an attacker must consider are as
follows.

Property 1. Deploying the malware without being traced.

Property 2. Aggregating the stolen information without being noticed.

Property 3. Aggregating the information (plaintext) without it being avail-
able to others (e.g., malicious interlopers, sysadmins).

Property 4. Obtaining the information from the malware without being
traced.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

2.1 Deniable Password Snatching 4

Other properties include preventing others from interfering with the op-
eration of the malware. Types of interference include: introducing faults,
altering the stolen data, forging command and control information to/from
the malware, and so on.

The classic type of information that is stolen is login/password pairs of
users of the host system. In this context we may imagine two other specific
attack scenarios:

Problem 1: The attacker is interested in the most recently used (MRU)
login/password pairs since users may periodically change their passwords
and new users may be added to the system.

Problem 2: The attacker is interested in the login/password pair of a par-
ticular user.

Cryptovirology views information theft via malware as a scientific prob-

lem and brings to bear both new notions and existing notions in modern
cryptology to solve it.

2.1 Deniable Password Snatching

The problem of devising a cryptovirus, cryptoworm, or cryptotrojan to steal
information with properties that are desirable to the attacker is well-known
in cryptovirology. The paper [9] introduces an attack called deniable pass-

word snatching that we now review:

Problem 1: An attacker is interested in obtaining indiscriminately the
MRU login/password pairs on an isolated (non-networked) machine M . The
attacker has access to M and the machine is used by many users.

Solution: The attacker generates a public key y and corresponding private
key x. The key y is placed in a cryptotrojan T . The attacker writes a
virus V that has for a payload a function that installs T . A program is
infected with V and is placed on a disk. The attacker inserts the disk into
M , runs the program, and walks away. V installs T in M . T operates as
follows. It captures each login/password pair that is entered. It encrypts
the pair with y to get ciphertext c. It stores c in a circularly linked list data
structure L that is saved to a hidden password file. The Trojan uses the
linked list to implement a MRU login/password storage method. So, when a
new ciphertext c is obtained, the Trojan T overwrites the oldest ciphertext
in L with c.

Consider the case that a writable disk D is inserted into M . If there is
enough free space on D and the user initiates a write to the disk (e.g., for a

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

2.1 Deniable Password Snatching 5

text file) then T copies L into the highest unused sectors on D. T ensures
that the sectors are left marked as “unused” by the underlying file system.

The attacker returns to M sometime later. He inserts a disk, creates
an innocuous text file on M and saves it to the disk. The Trojan “pushes”
L onto D automatically as previously described. The attacker walks away,
carefully extracts L from the “unused” sectors, and decrypts the elements
of L using x.

Security: The four properties are satisfied as follows. If the attacker is
caught with the disk before T is installed then he or she claims to be an
innocent victim of V (Property 1). The circularly linked list ensures that
the hidden password file remains fixed in size, as opposed to growing mono-
tonically larger over time. This helps lower the chance that the hidden file is
found (Property 2). The use of an asymmetric cryptosystem to encrypt the
login/password pairs prevents everyone except the attacker from decrypting
the ciphertexts (Property 3). The Trojan T effectively broadcasts L in a
covert fashion to everyone that inserts a writable disk with sufficient free
space into M . So, the attacker cannot be readily distinguished from other
users when he obtains L (Property 4).

The attack is deniable because in every phase the attacker can deny being
the attacker. During deployment the attacker can claim to be a victim of
the self-propagating program V . In the broadcast phase the attacker can
claim to be one of hundreds or even thousands of people that inadvertently
received the broadcast.

The paper [9] covers extensions to the above attack as well. It notes the
possibility of having T steganographically encode L into media and posting it
to a bulletin board (e.g., Usenet). It also notes the utility of probabilistically
re-encrypting1 the elements of L (e.g., using ElGamal). This enables T to
change all entries of L periodically, thereby obfuscating the history of the
login/password pairs that have been stored in L.

Section 6.7 of [10] extends deniable password snatching by incorporating
a Malware Loader. Suppose that instead of being isolated, the machine M
is on a network. The deployment phase of the attack can be strengthened
be minimizing the logic in the Trojan T , the logic that reveals the password-
stealing nature of T . We will now review Section 6.7.

The attacker places a digital signature verification public key ys in T .
The Trojan T “listens” to broadcasts made to a public bulletin board B
(or other public channel). The attacker crafts a password snatching Trojan
Tp and code signs it using the private signing key xs corresponding to ys.

1This is sometimes referred to as “blinding” the encryption.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

2.2 The Targeted Deniable Password Snatching Attack 6

The result is then encrypted with x and is then steganographically encoded
into media. The attacker posts the media (e.g., through a mix-net) to B.
T obtains the broadcast, steganographically decodes it, decrypts it,2 and
verifies the code-signed Trojan using ys. If the signature is valid then Tp is
installed in M by T . Tp also zeroizes all traces of T (and V if present).

So, the purpose of T is ultimately to install Tp that is obtained from
the network. If T is found within V on the attacker’s person during the
deployment phase then no password-stealing logic will be found.

2.2 The Targeted Deniable Password Snatching Attack

The work in [9] is ideally suited for stealing login/password pairs indiscrimi-
nately using a MRU priority. But it does not ideally address the problem of
having the Trojan steal the login/password pair of a particular user where
the login is known a priori. This is because, through bad luck, the list L
may not contain the desired login/password pair when L is obtained by the
attacker.

TPIR provides an elegant solution to Problem 2. The abstract and
introduction of this chapter provides a fair amount of background on TPIR.
The only additional properties that need to be presented in order to describe
the solution to Problem 2 are as follows.

1. For our TPIR protocol, the data structure for the query q is identical
to that of the response r.

2. For each entry of the database B = ((t0, b0), (t1, b1), ..., (tW−1, bW−1))
that is processed by the database administrator, the response r is
updated.

3. The TPIR protocol is designed in such a way that DatabaseAlgorithm
is executed on the database entries 0, 1, 2, ...,W − 1 in order. Let S1

be subset of T = {0, 1, 2, ...,W − 1}. Let S2 be a multiset of S1. For
example, if T = {0, 1, 2, 3, 4, 5, 6, 7} then S2 could be {4, 1, 2, 1, 6}.
The TPIR protocol is compatible with the following operation. The
database administrator runs the database algorithm on a sub-multiset
of B in order. In our example, the database algorithm would be run
on (t4, b4),(t1, b1),(t2, b2),(t1, b1),(t6, b6), in this order. TPIR2 (and
TPIR1) can be correctly run in this fashion. The only issue is that if
a database entry is not processed then it cannot be retrieved.

2There is an implicit integrity check during decryption for chosen-ciphertext secure
cryptosystems.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

Creating the Program 7

Let the database B be the login/password pairs of users that are au-
thorized to use M . The attacker wants the password bi belonging to the
user having login ti. The attacker supplies ti to QueryGenerator. The out-
put is a private key and query q. The password snatching Trojan includes
DatabaseAlgorithm and q.

Suppose a user logs into M by supplying (tj, bj) to M . When this hap-
pens, the Trojan runs DatabaseAlgorithm on input (q, tj , bj), resulting in
response r. The Trojan overwrites q with r.

Now suppose that the pair (tk, bk) is entered into M . The previous
response r is used as the query. The Trojan runs DatabaseAlgorithm on
input (r, tk, bk). The Trojan then overwrites the old r with the new response
r that is output by DatabaseAlgorithm. The new r is used as the query for
the next login/password pair, and so on.

The Trojan covertly broadcasts the current value of r in the same fashion
as in the deniable password snatching attack that is reviewed in Subsection
2.1. This can be a regular occurrence or due to some stimulus (e.g., a
writable disk being inserted into the machine). The attacker must somehow
obtain this broadcast to complete the password snatching attack.

The attacker supplies the private key and the response r to the algorithm
ResponseRetriever. This results in the output bi provided that user ti has
logged in since the time that the Trojan was installed.

The security properties are straightforward. The Trojan in no way ex-
poses the login of interest ti. This protects the interests of the attacker.
Also, the response r remains fixed in size. This helps ensure that Property
2 holds, since r will not grow in size over time.

3 Creating the Program

The program consists of the ANSI C source file csis.c. We constructed
a simple makefile for this file. The program was compiled using gcc. We
used the Minimalist GNU for Windows development suite (MinGW). The
program utilizes OpenSSL for the underlying crypto and big number prim-
itives. It also utilizes the Microsoft Cryptographic API (MS CAPI) to seed
the OpenSSL random number generator. Compiling the program results in
the MS DOS command-line program csis.exe.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

Running the Program 8

4 Running the Program

The program starts by printing out copyright information and some bibli-
ographic references. RAND status() is an OpenSSL function that returns
1 if the OpenSSL library believes that it has been seeded with a sufficient
number of random bytes.

"csis" Copyright (c) 2005-2006 by

Moti Yung and Adam L. Young. All rights reserved.

This is an experimental implementation of the

Tagged Private Information Retrieval (TPIR)

algorithm (with modifications) described in

Section 6.4 of Chapter 6 entitled

"Computationally Secure Information Stealing"

in the book:

"Malicious Cryptography: Exposing Cryptovirology"

by Adam Young & Moti Yung, Wiley, 2004.

See also:

C. Cachin, S. Micali, M. Stadler, "Computationally

Private Information Retrieval with Polylogarithmic

Communication", Proc. of Eurocrypt, 1999,

Springer-Verlag, pp. 402-414, 1999.

RAND_status() returned 1.

Computationally Secure Info Stealing Functions:

Type (a) to generate a query.

This creates/overwrites "query.bin" and "privkey.txt".

Type (b) to process the query (this may be

re-invoked multiple times for processing).

This updates "query.bin".

Type (c) to recover the answer to the

query using the private key.

This reads in "query.bin" and "privkey.txt".

Type (d) to conduct 200 stress tests.

Enter command (a-d) :

This chapter will only cover commands (a) through (c). Command (d)
is used for software testing purposes.

For very long numbers expressed in hexadecimal, the middle part of the
number is omitted and instead shows ellipsis (...). A decimal number printed

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

Running the Program 9

between “[” and “]” is the length in bits of the number written immediately
to the left.

Command (a) prompts the user for a login name. This string is used as
the input tag ti to the query generator. Tag ti corresponds to the database
entry (ti, bi) in the TPIR2 protocol. The login is passed to the algorithm
QueryGenerator which outputs a private key and query q.

The query and private key are stored in the output files query.bin and
privkey.txt, respectively. In this example we use the tag ti = “ayoung”.
The output of the program explains what some of these quantities are and
how they are related.

Enter command (a-d) : a

The search string for the query in this example program is the

login of the user. (tstr,bstr) is the (login,password) pair.

The login (tstr) is the tag that is used to identify the

associated password. Query generation can take SEVERAL MINUTES.

Enter login: ayoung

Input to RandPrime() is the tag tstr = "ayoung"

RandPrime() output the probable prime p =

E598BF5B847F0297328C2F6F77CEC88B [128]

Now Phi-Hiding p in m = q_1 * q_2...

Generating 320-bit divisor r_1 of q_1-1...

probable prime r_1 = D82A9FA248F45A28...72AD21AAC50290B5 [320]

Generating 512-bit probable prime q_1 = c_1*p*r_1 + 1...

c_1 = F3F8C1362EAAC706 [64]

probable prime q_1 = B8C329BD2629ADF5...C5026402ED430EAB [512]

Generating 320-bit divisor r_2 of q_2-1...

probable prime r_2 = F5280CC8F0C15148...8FF4935E87A5AA11 [320]

Generating 512-bit probable prime q_2 = c_2*r_2 + 1...

c_2 = F35CF05DD46E38A2D548A3888386EFF1D645719BBB65654E [192]

probable prime q_2 = E90E04B6BBB5C45E...D9FF33333447862F [512]

Computing u = (q_1-1)/p...

m = A833BF105EF465E1...F0684E5F766A3365 [1024]

Generating x[0],x[1],...,x[95] for query...

x[i] is a random element in Z_m^* for i = 0,1,...,95.

Wrote q_1 and u to the file named "privkey.txt".

Wrote m,x[0],x[1],...,x[95] to the file named "query.bin".

Query generation complete for tstr.

--------Memory Leaks displayed below--------

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

Running the Program 10

--------Memory Leaks displayed above--------

The file privkey.txt contains (q1, u) in ASCII. The file query.bin en-
codes the query in binary. A hex editor can be used to view the numbers
that comprise the query.

The last portion of the output indicates the presence or absence of mem-
ory leaks. We utilize OpenSSL’s memory leak checking functionality in our
program. As long as there is no output between these two lines, there should
not be any memory leaks in the implementation.

The query and the response to the query have the same file format, m
followed by x[0], x[1], ..., x[W − 1]. Command (b) prompts the user for a
login/password pair. In this example, we entered the login “ayoung” and
the password “12344321”. Command (b) passes this pair and the contents
of query.bin to DatabaseAlgorithm which outputs a response r. The file
query.bin is overwritten with r.

Enter command (a-d) : b

This command implements the database algorithm that privately

retrieves the password. At most 12 bytes of the password will

be stored. If the correct login is entered then the password

that follows will be stored in bits b_0,b_1,...,b_95 of bstr.

Note that entering (login1,pw1) followed by (login1,pw2) where

pw1 is not equal to pw2 will cause the retrieved password to

to be the bitwise logical OR of pw1 with pw2. Here login1 is

the tag that is encoded in the query.

Enter login : ayoung

Enter password: 12344321

Read m,x[0],x[1],...,x[95] from the file named "query.bin".

Input to RandPrime() is the tag tstr = "ayoung"

RandPrime() output the probable prime p =

E598BF5B847F0297328C2F6F77CEC88B [128]

Let b[j] denote bit j of bstr = "12344321".

During updating x[j] = x[j]^(p^b[j]) mod m is computed

for each j in which b[j] = 1. Here j ranges from 0

to 95.

Updating byte 1.

Updating byte 2.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

Running the Program 11

Updating byte 3.

Updating byte 4.

Updating byte 5.

Updating byte 6.

Updating byte 7.

Updating byte 8.

Updating byte 9.

Updating byte 10.

Updating byte 11.

Updating byte 12.

Wrote m,x[0],x[1],...,x[95] to the file named "query.bin".

--------Memory Leaks displayed below--------

--------Memory Leaks displayed above--------

It is instructive to run command (b) multiple times. For instance, the
login “ayoung” and password “12344321” can be entered multiple times.
Other login and password pairs can also be entered. As long as “12344321”
is always entered when the login “ayoung” is used, command (c) will properly
retrieve “12344321” in this example.3

A particularly good test is to run command (b) on (ti−1, bi−1) then on
(ti, bi), and then on (ti+1, bi+1). The main constraint on these 6 strings
for the test is that ti−1 6= ti 6= ti+1. Recall that the query was generated
based on ti. The reason that this test is good is because it modifies the
query/response both before and after (ti, bi) is processed by the database
algorithm. The value bi should be privately retrieved correctly in this test.
Command (d) invokes the function StressTest that does exactly this test
many times over.

Command (c) reads in the files query.bin and privkey.txt. The con-
tents of query.bin, which is the response to the database algorithm, is
supplied to algorithm ResponseRetriever along with the private key. As
shown in the example output, the password “12344321” is properly retrieved
and printed to the screen.

Enter command (a-d) : c

Read m,x[0],x[1],...,x[95] from the file named "query.bin".

3Technically, this only holds with overwhelming probability.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

The Query Generator 12

Read q_1 and u from the file named "privkey.txt".

Computing v = ((x[i] mod q_1)^u mod q_1) == 1)

for i = 0,1,...,95. The == operator listed above is the ANSI C

equality testing operator. So, v is 1

only when (x[i] mod q_1)^u mod q_1 is 1.

The recovered data (given in hexadecimal) is:

313233343433323100000000

First 8 characters of password (if it was recovered) is:

"12344321"

Note: If the listed password is 12 characters then

possible additional characters could be missing.

--------Memory Leaks displayed below--------

--------Memory Leaks displayed above--------

5 The Query Generator

We start our explanation of the query generator by covering the function
that transforms the tag string (i.e., the login string) into a probable prime.
The function RandPrime takes as input the tag string and returns a number
p that is PHI HIDDEN PRIME LEN = 128 bits in length. The probability that
the transformation returns p where p is prime is overwhelming.

RandPrime operates as follows. The tag string tstr is hashed using
the SHA-256 hash algorithm [8]. 128 contiguous bits are taken from the
hash as indicated in the code for RandPrime below. The uppermost 3
bits of these 128 bits are overwritten with 111 and the least significant
bit is overwritten with 1. The resulting value is a candidate value for p.
The number p is then subjected to the Miller-Rabin probabilistic primality
test. The number of iterations for the test is determined by the function
BN prime checks for size that is based on [6]. If p is determined to be
composite then the algorithm sets p← p + 2 and Miller-Rabin is run again,
and so on.

This incremental search has the potential to result in a value p that
is greater than PHI HIDDEN PRIME LEN bits in length. For this reason the
loop checks the size of the candidate value p and if it grows to more than
PHI HIDDEN PRIME LEN bits in length then the program halts with failure.

void RandPrime(BIGNUM *p,const char *tstr)

{

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

The Query Generator 13

unsigned char hash[32];

SHA256_CTX shactx;

printf("Input to RandPrime() is the tag tstr = \"%s\"\n",tstr);

BN_CTX *ctx = BN_CTX_new();

SHA256_Init(&shactx);

size_t len = strlen(tstr);

SHA256_Update(&shactx,tstr,len);

SHA256_Final(hash,&shactx);

hash[0] |= 0xE0;

hash[15] |= 0x01;

BN_bin2bn(hash,16,p);

int checks = BN_prime_checks_for_size(PHI_HIDDEN_PRIME_LEN);

for (;;)

{

if (BN_is_prime_fasttest(p,checks,NULL,ctx,NULL,1) == 1)

break;

BN_add_word(p,2); /* do incremental search for prime */

if (BN_num_bits(p) > PHI_HIDDEN_PRIME_LEN)

{

printf("ERROR: preimage maps to a value p that is\n");

printf("too large. This is a very rare occurrence.\n");

exit(1);

}

}

PrintBigS("RandPrime() output the probable prime p =\n ",p);

BN_CTX_free(ctx);

}

QueryGenerator supplies the tag string to RandPrime to obtain p. The
value p is then phi-hidden in the composite m = q1q2. The phi-hiding is
accomplished by passing p to PhiHide which returns the probable primes q1

and q2. The values u = (q1 − 1)/p and m = q1q2 are computed. Following
this the values x[0], x[1], ..., and x[W−1] are chosen randomly from ZZ

∗

m. The
query is (m,x[0], x[1], ..., x[W − 1]). The private key is (q1, q2, u). However,
only (q1, u) is stored to privkey.txt since these are the only values that are
needed to retrieve bi from the response.

void QueryGenerator(querystruct *query,csisprivkey *privkey,

const char *tstr)

{

BN_CTX *ctx = BN_CTX_new();

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

The Query Generator 14

BIGNUM *tmp = BN_new();

BIGNUM *p = BN_new();

RandPrime(p,tstr);

PhiHide(privkey->q1,privkey->q2,p);

printf("Computing u = (q_1-1)/p...\n");

BN_sub(tmp,privkey->q1,BN_value_one());

BN_div(privkey->u,tmp,tmp,p,ctx);

BN_mul(query->m,privkey->q1,privkey->q2,ctx);

PrintBigS("m = ",query->m);

printf("Generating x[0],x[1],...,x[%d] for query...\n",W-1);

printf("x[i] is a random element in Z_m^* for i = 0,1,...,%d.\n",

W-1);

int i=0;

for (;i<W;i++)

for (;;)

{

BN_rand_range(query->x[i],(BIGNUM *) query->m);

if (IsInZmstar(query->x[i],query->m,ctx))

break;

}

BN_clear_free(p);BN_clear_free(tmp);

BN_CTX_free(ctx);

}

PhiHide generates q1 and q2 using the algorithms HideInPrime and
GenerateQ2. HideInPrime generates q1 and GenerateQ2 generates q2. The
value p is passed to HideInPrime so that it can generate a q1 such that p
divides q1 − 1 evenly.

void PhiHide(BIGNUM *q1,BIGNUM *q2,const BIGNUM *p)

{

printf("Now Phi-Hiding p in m = q_1 * q_2...\n");

HideInPrime(q1,p);

PrintBigS("probable prime q_1 = ",q1);

GenerateQ2(q2);

PrintBigS("probable prime q_2 = ",q2);

}

The algorithm HideInPrime generates a number r1 randomly that is
(kover2 - PHI HIDDEN PRIME LEN - 64) bits in length. The 2 most significant
bits of r1 are set to 1. If Miller-Rabin indicates that r1 is prime then r1 is

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

The Query Generator 15

determined and the generation of q1 continues. The number q1 that is output
will have r1 as a factor of q1 − 1.

After r1 is found the algorithm proceeds to generate a random factor
c1. This number is generated such that the 3 most significant bits of it
are 1 and the least significant bit is 0. HideInPrime tests the primality of
q1 = c1r1 + 1. If q1 is kover2 bits in length and Miller-Rabin indicates that
it is prime then q1 is the final return value. Otherwise, another candidate
factor c1 is chosen randomly and q1 is tested again, and so on.

void HideInPrime(BIGNUM *q1,const BIGNUM *p)

{

int retval,r1len,safe=0;

BIGNUM *r1,*c1,*tmp;

BN_CTX *ctx = BN_CTX_new();

r1 = BN_new();c1 = BN_new();tmp = BN_new();

r1len = kover2 - PHI_HIDDEN_PRIME_LEN - 64;

int checks = BN_prime_checks_for_size(kover2);

printf("Generating %d-bit divisor r_1 of q_1-1...\n",r1len);

for (;;)

{

BN_generate_prime(r1,r1len,safe,NULL,NULL,NULL,NULL);

if (BN_is_bit_set(r1,r1len-2))

break;

}

PrintBigS("probable prime r_1 = ",r1);

BN_mul(q1,r1,p,ctx);

printf("Generating %d-bit probable prime q_1 = c_1*p*r_1 + 1...\n",

kover2);

for (;;)

{

BN_rand(c1,64,1,0);

BN_set_bit(c1,61);

BN_clear_bit(c1,0);

BN_mul(tmp,q1,c1,ctx);

BN_add_word(tmp,1);

if (BN_num_bits(tmp) == kover2)

{

retval = BN_is_prime_fasttest(tmp,checks,NULL,ctx,NULL,1);

if (retval == 1)

break;

}

}

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

The Database Algorithm 16

PrintBigS("c_1 = ",c1);

BN_copy(q1,tmp);

BN_clear_free(r1);BN_clear_free(c1);BN_clear_free(tmp);

BN_CTX_free(ctx);

}

The security parameter PHI HIDDEN PRIME LEN is set to be 128 and the
security parameter kover2 is set to be 512. For the moment, consider the
problem of factoring m with the other security properties of TPIR aside.
In this case we may assume that the phi-hidden value p is known without
ambiguity to the cryptanalyst. This means that (1

4
+ δ)|q1| bits of q1 are

publicly known (and hence known to the cryptanalyst). Here |q1| denotes
the length in bits of q1. The value δ is very small and takes into account
the fixed upper and lower bits of c1, etc.

We feel that this ratio provides strong enough protection against crypt-
analysis at this time (but these security parameters are arguably cutting it
close). There has been a significant amount of research on factoring com-
posites when certain bits of the private key are known [5]. We remark that
PHI HIDDEN PRIME LEN must be large enough to avoid collisions in p.

Algorithm GenerateQ2 generates a number r2 that has a bit length of
(kover2 - PHI HIDDEN PRIME LEN - 64). The 2 highest order bits of r2 are
1. If Millier-Rabin indicates that r2 is prime then r2 is determined and the
generation of q2 continues. The number q2 that is output will have r2 as a
factor of q2 − 1.

GenerateQ2 then randomly generates a candidate even factor c2 that is
PHI HIDDEN PRIME LEN+64 bits long with the 3 highest order bits set to 1.
If q2 = c2r2 + 1 is a kover2-bit number and Miller-Rabin indicates that it
is prime then q2 is returned by GenerateQ2. Otherwise another candidate
for c2 is generated, and so on.

6 The Database Algorithm

Recall that p is phi-hidden by m = q1q2. Also, the user wants to retrieve
the data string bi corresponding to the tag ti. So, (ti, bi) is an entry in the
database B.

The principle behind TPIR2 is as follows. The array element x[i] is an
element in ZZ

∗

m. If the order of x[i] is divisible by p then we define x[i] to
represent a binary 0. If the order of x[i] is not divisible by p then we define

x[i] to represent a binary 1. When x[i] represents a binary 0 it can be altered
to represent a binary 1 by setting x[i]← x[i]p mod m.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

The Database Algorithm 17

So, the idea is to initially have all W values x[0], x[1], ..., x[W − 1] rep-

resent binary zeros. This will be the case with overwhelming probability by
simply selecting these elements at random from ZZ

∗

m.
Consider the event that entry (t, b) of B is passed to the database al-

gorithm. The database algorithm passes t to RandPrime. The output is a
number pc. For all j ∈ {0, 1, 2, ...,W − 1}, if bit j of b is 1 then the database
algorithm updates x[j] by setting x[j]← x[j]pc mod m. There are 2 possible
cases:

Case 1. Suppose that t 6= ti. Then with overwhelming probability pc 6= p.
Suppose that pc 6= p. Then if bit j of b is 1 then the update operation will
not remove p from the order of x[j]. So, the binary digit that x[j] represents
will not change.

Case 2. Suppose that t = ti. Then with overwhelming probability pc = p.
Suppose that pc = p. Then if bit j of b is 1 then the update operation will
remove p from the order of x[j] if p has not already been removed. So, x[j]
is certain to represent a binary 1 after the update operation.

So, as long as no (ti, bj) is supplied to the database algorithm where bj 6=
bi, we would expect the database algorithm to be able to correctly retrieve
bi for the user where bi is encoded in the response (i.e., the updated query).
The next section explains how the user retrieves bi from the response.

void DatabaseAlgorithm(querystruct *query, const char *tstr,

const char *bstr)

{

unsigned char buff[NUM_DATA_BYTES],array[W];

BIGNUM *p,*m,*xval;

BN_CTX *ctx = BN_CTX_new();

p = BN_new();

RandPrime(p,tstr);

m = query->m;

int j=0;

for (;j<NUM_DATA_BYTES;j++)

buff[j] = 0;

int len = strlen(bstr);

if (len > NUM_DATA_BYTES)

len = NUM_DATA_BYTES;

strncpy(buff,bstr,len);

BitString2BitArray(array,buff);

printf("Let b[j] denote bit j of bstr = \"%s\".\n",bstr);

printf("During updating x[j] = x[j]^(p^b[j]) mod m is computed\n");

printf("for each j in which b[j] = 1. Here j ranges from 0\n");

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

The Response Retriever 18

printf("to %d.\n\n",W-1);

for (j=0;j<W;j++)

{

if (j % 8 == 0)

printf("Updating byte %d.\n",(j>>3)+1);

if (array[j])

{

xval = query->x[j];

BN_mod_exp(xval,xval,p,m,ctx);

}

}

printf("\n");

BN_clear_free(p);

BN_CTX_free(ctx);

}

7 The Response Retriever

Recovering the data string bi for database entry (ti, bi) amounts to investi-
gating the orders of the integers x[0], x[1], ..., x[W − 1] that are included in
the response that is sent to the user by the database administrator. The
private key values (q1, u) are used to analyze these orders.

More specifically, the response to the query is processed as follows. Con-
sider integer x[i] where 0 ≤ i ≤ W − 1. The integer z = x[i]u mod q1 is
computed. The value v is set to 1 if z is 1 and is set to 0 otherwise. The
value v is the binary digit that x[i] represents.

Consider integer x[i] where 0 ≤ i ≤ W − 1. In this explanation we will
assume that the phi-hidden value p is prime (Miller-Rabin assures this with
overwhelming probability). There are 2 possible cases.

Case 1. Suppose that x[i] represents a binary 0. Then x[i]u mod q1 will
still have an order that is divisible by p. So, in this case z = x[i]u mod q1

will not4 be 1 and v will correctly be 0.
Case 2. Suppose that x[i] represents a binary 1. Then x[i]u mod q1 = 1.

This follows from Fermat’s little theorem. So, in this case z = x[i]u mod q1

= 1 and v will correctly be 1.

4The chance that x[i] ≡ 1 mod q1 in the response that the database administrator
sends to the user is negligible.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

Conclusion 19

void ResponseRetriever(unsigned char buff[NUM_DATA_BYTES],

const querystruct *query,const csisprivkey *privkey)

{

unsigned char array[W];

BN_CTX *ctx = BN_CTX_new();

BIGNUM *tmp = BN_new();

BIGNUM *z = BN_new();

printf("Computing v = ((x[i] mod q_1)^u mod q_1) == 1)\n");

printf("for i = 0,1,...,%d. The == operator listed above ",W-1);

printf("is the ANSI C\nequality testing operator. So, v is 1\n");

printf("only when (x[i] mod q_1)^u mod q_1 is 1.\n");

BIGNUM *q1 = privkey->q1;

BIGNUM *u = privkey->u;

int i = 0;

for (;i<W;i++)

{

BN_mod(tmp,query->x[i],q1,ctx);

BN_mod_exp(z,tmp,u,q1,ctx);

int v = BN_is_one(z);

array[i] = v;

}

BitArray2BitString(buff,array);

BN_clear_free(tmp);BN_clear_free(z);

BN_CTX_free(ctx);

}

8 Conclusion

We presented an experimental implementation of our tagged private infor-
mation retrieval protocol that we call TPIR2. Example output was provided
and the core crypto, expressed in ANSI C, was given. Care was taken to
position the protocol realistically within the context of a provable security
argument vs. a heuristic security argument and we stated very clearly that
TPIR2 falls into the latter category. We encourage readers to send feedback
and bug reports to feedback@cryptovirology.com.

References

[1] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally
private information retrieval with polylogarithmic communication. In

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

REFERENCES 20

J. Stern, editor, Advances in Cryptology—Eurocrypt ’99, pages 402–
414. Springer-Verlag, 1999. Lecture Notes in Computer Science No.
1592.

[2] Benny Chor and Niv Gilboa. Computationally private information re-
trieval. In Proceedings of the 29th ACM Symposium on Theory of Com-

puting, pages 304–313. ACM, 1997.

[3] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-
vate information retrieval. In Proceedings of the 36th IEEE Symposium

on Foundations of Computer Science, pages 304–313. IEEE, 1995.

[4] David A. Cooper and Kenneth P. Birman. Preserving privacy in a net-
work of mobile computers. In Proceedings of the 16th IEEE Symposium

on Security and Privacy, pages 26–38. IEEE, 1995.

[5] Don Coppersmith. Finding a small root of a bivariate integer equa-
tion; factoring with high bits known. In Ueli Maurer, editor, Advances

in Cryptology—Eurocrypt ’96, pages 178–189. Springer, 1996. Lecture
Notes in Computer Science No. 1233.

[6] Ivan Damg̊ard, Peter Landrock, and Carl Pomerance. Average case
error estimates for the strong probable prime test. Mathematics of

Computation, 61(203):177–194, 1993.

[7] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Sin-
gle database, computationally-private information retrieval. In Proceed-

ings of the 38th IEEE Symposium on Foundations of Computer Science,
pages 364–373. IEEE, 1997.

[8] National Institute of Standards and Technology (NIST). FIPS Publi-
cation 180-2: Secure Hash Standard. Federal Register, August 1, 2002.

[9] Adam L. Young and Moti M. Yung. Deniable password snatching: On
the possibility of evasive electronic espionage. In Proceedings of the 18th
IEEE Symposium on Security and Privacy, pages 224–235. IEEE, May
1997.

[10] Adam L. Young and Moti M. Yung. Malicious Cryptography: Exposing

Cryptovirology. Wiley, February 2004.

Copyright c© 2005-2006 by Moti Yung and Adam Young. All rights reserved. Ver 2.1.

